1-866-404-5415 US and Canada
1-414-299-3896 Outside the U.S.
1-866-404-5415 US and Canada 1-414-299-3896 Outside the U.S.

Pressure Transmitters

Pressure is one of the most frequently measured parameters in industrial process control applications. SmartMeasurement’s ALDPT series of pressure transmitters may be configured to measure absolute pressure, gauge pressure or differential pressure and is also available in a muti-variable configuration that is capable of simultaneously measuring temperature and pressure. This level of versatility allows the ALDPT transmitter to be used in virtually any industry or application where pressure measurement is required.

 

 

SMARTMEASUREMENT™ PRESSURE TRANSMITTERS

Pressure Transmitters

The SmartMeasurementTM ALDPT series of pressure transmitters are used for measuring process pressure, hydrostatic level, and liquid or gas volumetric or mass flow rates in all kinds of process applications. Within the ALDPT Series there are five different types of instruments to accommodate the wide variety of applications that exist in industry. SmartMeasurement’s staff of experienced application engineers is available to help users select among these choices and specify the instrument that provides the best solution for any pressure measurement application.

Pressuretransmitters Recolor3

Key Applications

Pressure Transmitters from SmartMeasurement have been successfully installed in a wide variety of industries and applications including:

Why choose a Pressure Transmitter

Pressure measurement is the most widely measured variable in industrial process control applications.  Pressure measurement is commonly performed in applications involving all media phases including liquid, gas, and steam. For example, in the oil & gas industry, wellhead pressures are measured in subsea and topside locations. In water towers, pressure is measured to monitor and control water levels.  Pressure sensors are used to monitor the water line pressure in automatic sprinkler systems. Barometric pressure is used to predict the weather. 

 

Special Cases

The pressure transmitter plays an integral role in applications where flow, level, and temperature measurement is being performed. A differential pressure (DP) transmitter can be used to measure both flow and differential pressure when used in conjunction with a primary flow element. They may also be used to infer liquid level as a function of pressure differential in sealed, pressurized tanks. Some pressure transmitters also utilize temperature sensors to measure process temperature. This type of pressure transmitter may be used to calculate mass flows of compressible medias such as steam and natural gas when used in conjunction with a primary flow element.

Request a quote pressure transmitters for your application or contact SmartMeasurement to learn more.

There are Four Main Types of Pressure Transmitters

Absolute Pressure transmitters (ALAPT measure absolute pressure referenced to a full vacuum. Fluid pressure is compared against the reference pressure of an absolute vacuum in a sealed reference chamber. Smartmeasurement’s (ALAPT) is an absolute pressure transmitter that measures pressures that are not influenced by atmospheric pressures. Vacuum transmitters are often used where high accuracy is required, such as low-pressure measurement of vacuum distillation columns.

Gauge Pressure transmitters (ALGPT) are referenced to atmospheric conditions.  The gauge pressure transmitter is widely used in the process industries to measure the pressures of liquid, gas, and steam and is capable of measuring both low and high pressure (up to 8700 psig).

Today, absolute (ALAPT) and gauge (ALGPT) pressure transmitters are replacing pressure gauges, switches, and transducers because are they are more stable and reliable than pressure transducers and because they have the ability to transmit the pressure value to control devices such as a PLC. This is particularly true in factory automation / industrial process control applications.

Differential pressure (DP) transmitters (ALDPT) have been used for more than 100 years to measure flowrate. Their wide install base gives them a pronounced advantage over other types of flowmeters; however, they are continually being displaced by new-technology flowmeters such as Coriolis and ultrasonic, especially when higher accuracy and greater reliability are required.

A Differential Pressure transmitter measures the difference between two pressures. When used in tandem with a primary flow element, the differential pressure transmitter measures the difference between pressure taps that are upstream and downstream of a disruption integral to the flow element such as an orifice or venturi.  The measured pressure differential is used to infer a flow rate. Used together, the primary flow element and pressure transmitter, in essence, form a flow meter, as shown below.

Multivariable pressure transmitters (ALDPT-MV) measure two or more process variables. This type of pressure transmitter is capable of measuring volumetric flow, along with pressure and temperature, and is also able to use these measurements to compute mass flow.  Multivariable transmitters are becoming more widely used for steam and gas flow measurement.  While they are more expensive than single variable DP transmitters, this approach is typically more economical than mass flow sensors such as thermal dispersion and Coriolis type.

Pressure Transmitter Pic2
Alapt Pressure Transmitter
Aldpt Pressure Transmitter
Aldplt
Aldpt Mv Pressure Transmitter

Every SmartMeasurement ALDPT pressure transmitter is constructed from high quality materials and is fully configurable in order to provide functionality and longevity with any type of process media in any type of application. All transmitter bodies and diaphragms come standard in stainless steel #316 L with Hastelloy C® or other exotic alloys available on request. Transmitters may be specified with a variety of process connections including male or female NPT or metric threads as well as flanged and with electrical outputs that include 4-20 mA, HART, and 4-20 mA proportional to the square root of pressure. Accuracy grades of ±0.5%, ±0.2%, and ±0.075% of reading is available and a wide variety of pressure ranges are available for each version of the instrument that is offered. Intrinsically safe / explosion proof approvals are available for operation in hazardous areas.

These instruments are also offered with a full line of accessories commonly required in industrial settings. These accessories include mounting hardware such as rigid and bendable brackets for mounting to 2″ pipe and isolation valve manifolds. The valve manifolds are offered in either stainless steel #304 or #316 materials of construction in either 2-valve, 3-valve, of 5-valve configurations. Capillary assemblies are also available in virtually any length with standard silicone fill fluid to accommodate high temperatures, or with optional inert fluids or exotic fluids such as NaK for ultra-high temperature applications.

Pressure is defined as exertion of force per unit area.  There are many different instruments used for pressure measurement, including pressure gauges, pressure sensors, pressure transducers, as well as pressure transmitters. There are also specialized devices for measuring pressure extremes, such as vacuum pressure.

Pressure Sensors

Pressure sensors operate by sensing pressure and converting it into an electrical quantity. Piezoresistive and capacitive are the two most commonly seen types in industrial applications with piezoresistive being the most commonly used.

The electrical resistance of piezoresistive materials, measured in Ohms (Ω), will change when they are strained or compressed. A piezoresistive pressure sensor consists of a micro-machined silicon diaphragm that has a piezoresistive strain gauge diffused into it. The diaphragm is fused to a silicon or glass backplate. The sensor contains resistors that are typically arranged in the form of a Wheatstone Bridge Circuit. As pressure increases on the piezoresistive material, it is more resistant to the electrical current passing through it. This results in the output of the Wheatstone Bridge, measured in millivolts, being directly proportional to pressure.

Capacitive pressure sensors make use of a thin diaphragm that serves as one plate of a capacitor. This diaphragm is usually a metal or metal-coated quartz component. The diaphragm is exposed to a reference pressure on one side and to the process pressure on the other. Changes in pressure will cause a slight deformation of the pressure sensing plate, which will in turn cause changes in the electrical capacitance. These changes in capacitance are directly proportional to the pressure applied to the plate that is exposed to the process. 

Theory Of Operation Of Diagram Seal

Pressure sensors detect variations in pressure by converting changes in resistance or capacitance into electrical values. These electrical signals are relatively weak and require amplification to carry these values over a distance. Pressure transmitters are typically made up of a pressure sensor, an amplifier, and signal conditioning circuitry which converts the raw signal into an industry standard output such as 4-20 mA or a frequency/pulse signal which may be transmitted over a long distance. If the raw signal is converted to a 0-5 or 0-10 VDC signal which may only be transmitted over an intermediate distance, the device may be referred to as a pressure transducer. The output signal from the pressure transmitter or pressure transducer relays the pressure reading to a flow computer, controller, or distributed control system (DCS).  Pressure transmitters also typically contain an LED or LCD display element that allows the user to view the measured pressure value directly at the point of measurement

Have questions about our Pressure Transmitters? Contact the experts at SmartMeasurement today!

Installation Methods

Primary Application

Special Features

Main Markets

Installation Methods

Primary Application

Special Features

Main Markets

Installation Methods

Primary Application

Special Features

Main Markets

Installation Methods

Primary Application

Special Features

Main Markets